Schlagwort-Archive: Patterns

Microservices don’t like thinking in conventional entities

I recently had one of these special AHA-moments in a workshop held by Udi Dahan, CEO of Particular. In his example he was using the classic entity of a customer.

To realise microservices means cutting functionality in a clean way and to transfer it into separate pillars (or silos). Each silo has to have the responsibility over it’s own data, on which it builds the respective business processes. So far, so good. But how can we realise this for our typical customer, who’s model is shown in the screenshot? Different properties are needed or changed by different microservices.

If the same entity is used in all pillars, there needs to be a respective synchronisation between all microservices. This results in a considerable impact on scalability and performance. In an application with lots of parallel changes of an entitiy the failing of the business processes will increase – or lead to inconsistencies in the worst case.

Conventional Customer

conventional entity of a customer

Udi suggests the following modelling

New Customer

Customer is modelled with independent entities

To identify which data belongs together, Udi suggests an interesting approach:

Ask the operating department if changing a property has a consequence for another property.

Would changing the last name of customer have an influence on the price calculation? Or on the way of marketing?

Now we need to solve the problem of aggregation, for example if I want to show different data from different microservices in my view. In a classic approach we would have a table with following columns:

ID_Customer ID_MasterData ID_Marketing ID_Pricing

This leads to the following two problems:

  1. The table needs to be extended if a new microservice is added
  2. If a microservice covers the same functionality in the form of data, you would have to add multiple columns for each microservice and allow NULL values as well

An example for the second point could be a microservice which covers the matter of payment methods. In the beginning you could only use credit cards and debit charges. Then Paypal. Bitcoin soon after. The microservice would have different tables on which the respective data for the payment method would be stored. In the aggregated table shown above it would be necessary to fill a separate column for each payment method the customer is using. If he doesn’t use it, a NULL value would be written. As you can see: This sucks.

Another approach is much more convenient for this. Which one this is and how it’s realised technically you can find on the GitHub repository of Particular.

 

Werbung

Microservices mögen kein Denken in klassischen Entitäten

Einen ganz besonderen AHA Moment hatte ich kürzlich in einem Workshop bei Udi Dahan, CEO von Particular. In seinem Beispiel ging es um die klassische Entität eines Kunden.

Microservices zu realisieren bedeutet Fachlichkeiten sauber schneiden und in eigenständige Silos (oder Säulen) packen zu müssen. Jedes Silo muss dabei die Hohheit über die eigenen Daten besitzen, auf denen es die zugehörigen Geschäftsprozesse abbildet. Soweit so gut. Doch wie lässt sich dies im Falle eines Kunden bewerkstelligen, der klassischerweise wie im Screenshot zu sehen modelliert ist? Unterschiedliche Eigenschaften werden von unterschiedlichen Microservices benötigt bzw. verändert.

Wird die gleiche Entität in allen Silos verwendet, muss es eine entsprechende Synchronisierung zw. den Microservices geben. Das hat erhelbiche Auswirkungen auf Skalierbarkeit und Performance. In einer Applikation mit häufig parallelen Änderungen an einer Entität wird das Fehlschlagen von Geschäftsprozessen zunehmen – oder im schlimmsten Fall zu Inkonsistenzen führen.

Klassische Kundeentität

Klassische Kundeentität

 

Udi schlägt die folgende Modellierung vor:

Neue Modellierung eines Kunden

Der Kunde wird durch unabhängige Entitäten modelliert

Zur Identifikation, welche Daten zusammengehören, schlägt Udi einen Interessanten Ansatz vor:

Fragt die Fachabteilung, ob das Ändern einer Eigenschaft Auswirkung auf eine andere Eigenschaft hat. 

Würde das Ändern des Nachnamens einen Einfluss auf die Preiskalkulation haben? Oder auf die Art der Marketings?

Nun gilt es noch das Problem der Aggregation zu lösen, sprich wenn ich in meiner Anzeige unterschiedliche Daten unterschiedlicher Microserivces anzeigen möchte. Klassischerweise würde es jetzt eine Tabelle geben, die die Spalten

 

ID_Kunde ID_Kundenstamm ID_Bestandskundenmarketing ID_Preiskalkulation

 

besitzt. Das führt aber zu 2 Problemen:

  1. Die Tabelle muss immer erweitert werden, wenn ein neuer Microservices hinzugefügt wird.
  2. Sofern ein Microservices die gleiche Funktionalität in Form unterschiedlicher Daten abdeckt, müssten pro Microservices mehrere Spalten hinzugefügt und NULL Werte zugelassen werden.

Ein Beispiel für Punkt 2 wäre ein Microservices, der das Thema Bezahlmethoden abdeckt. Anfangs gab es beispielsweise nur Kreditkarte und Kontoeinzug. Dann folgte Paypal. Und kurze Zeit später dann Bitcoin. Der Microservices hätte hierzu mehrere Tabellen, wo er die individuelle Daten für die jeweilige Bezahlmethode halten würde. In oben gezeigter Aggregationstabelle müsste aber für jede Bezahlmethode, die der Kunde nutzt, eine Spalte gefüllt werden. Wenn er sie nicht benutzt, würde NULL geschrieben werden. Man merkt schon: Das stinkt.

Ein anderer Ansatz ist da deutlich besser geeignet. Welcher das ist und wie man diesen technischen realisieren kann, könnt ihr im GitHub Repository von Particular nachschauen.

 

Programmieraufgaben für Bewerber

Ich habe in diesem Post beispielhaft eine unserer Programmieraufgaben herausgezogen, die kürzlich unser neuer Mitarbeiter Hr. Jörg Weißbecker gelöst hat. In der Regel ist das Ziel ein möglichst hochwertiges Ergebnis zu programmieren, das z.B. die Prinzipien OCP und SoC solide umsetzt.

Zeitdruck ist an der Stelle völlig sekundär, sodass die Bewerber die Aufgaben immer von zuhause in aller Ruhe entwickeln können. Sie erhalten dann von mir nach jeder Iteration die nächste Anforderung übermittelt.

Am Ende besprechen wir das Ergebnis, sprich sie stellen ihren Gedankengang vor, reflektieren Probleme und stellen sich meinen Fragen.

 

Allgemeines vorab:

  • Es ist keine Oberfläche notwendig, es genügt eine Konsolenanwendung
  • Welche Bibliotheken genutzt werden, ist freigestellt
  • Das Schreiben von Tests ist optional
  • Aber: Setzte das objektorientierte Paradigma so gkonsequent als möglich um (!)

 

Iteration 1: Entwickeln Sie ein Programm, welches prüft, ob 2 Dateien identisch sind. Beispiel für den Aufruf:

Dublettenfinder.exe file1.txt file2.txt

 

Iteration 2: Statt 2 Dateien sollen jetzt 2 Ordnerpfade übergeben werden, für welche das Programm prüft, ob das Ordnerpaar Dubletten enthält. Wenn ja, soll es pro Dublette die Dateipfade gruppiert ausgeben. Beispiel:

Hash: xyxzasdfadsf

  • Datei1: c:\abc.pdf
  • Datei2: d:\efg.pdf

 

Iteration 3: Es soll möglich sein eine Liste von Verzeichnissen zu übergeben, sodass beliebig viele Verzeichnisse verglichen werden können. Außerdem sollen, sofern vorhanden, auch die Unterverzeichnisse geprüft werden.

 

Iteration 4: Fügen Sie bitte eine optionale Konfigurationsmöglichkeit hinzu, um nur bestimmte Dateitypen vergleichen zu können, sodass entweder alle Dateitypen, genau einen Dateityp oder n-Dateitypen verglichen werden können.

 

Iteration 5: Machen Sie den Algorithmus austauschbar, sodass der Identitätscheck z.B. anhand von Sha256 Hashwerten oder Bildanalyse durchgeführt werden kann.

 

Iteration 6: Nutzen Sie einen IoC Container, um dynamisch beim Start der Anwendung alle vorhandenen Algorithmen zu laden und dann vom User in der Konsole auswählen zu lassen. Jeder Algorithmus soll in einer eigenen Assembly liegen. Machen Sie dann eine Assembly für MD5 und Sha256.

 

Die  Lösung zu diesem Zeitpunkt müsste sich Fragen bzgl. der Erweiterung der folgenden 2 Änderungen stellen:

  • Lösche Dubletten anhand eines bestimmten Patterns, z.B. alle in Verzeichnis ‚xy‘ oder mit Dateinamen, die ‚yz‘ enthalten.
  • Ermögliche die Erkennung von doppelten Bildern anhand der Bilderkennung und nehme immer die beste Auflösung.

 

Kürzlich gab es in der dotnetpro einen Artikel von Stefan Lieser, welcher eine recht ähnliche Kata gelöst hat. Die Lösung von Herrn Weißbecker befindet sich hier.

Die großen 4: Pfadfinderregel, Wirtschaftlichkeit, Clean Code, SOLID Principles

Was ist damit gemeint? Gemäß der Pfadfinderregel soll ein Entwickler Code immer besser hinterlassen, als er ihn vorgefunden hat. Clean Code oder guter Code ist häufig dann erreicht, wenn das Mindestmaß an essentiellen Code Prinzipien umgesetzt ist. Das sind die sogenannten SOLID Principles. Jedoch ist guter Code kein Selbstzweck, sondern dient dem größeren Ziel der Wirtschaftlichkeit.

Im folgenden Video zeige ich an einem Praxisbeispiel, wie ich bei einem bestehendem, eher unwichtigem Projekt vorgegangen bin. Timeboxed in 1h so viel refaktorisieren und den Code verbessern wie möglich. Dabei gehe ich auf Prinzipien wie DRY und OCP ein und zeige Techniken wie DI, sowie Tools wie den IoC Container Castle Windsor.

Feedback nehme ich wie immer gerne mit. Wenn ihr mehr von solchen Videos sehen wollt, schreibt mir das in die Kommentare, damit ich weiß: Hier lohnt es sich mehr zu machen.

Zum YouTube Video

Durch Klicken auf das Bild geht es zum Video

Flexibles Bootstrapping durch Composition

In diesem Webcast zeige ich unseren Kompositions-Ansatz für das Bootstrapping. Die Interfaces sind schmal, die Implementierungen überschaubar, das Ganze ist flexibel und lässt sich gut testen.

Hier der gezeigte Code:

   1: public class BootstrapperContext

   2: {

   3:     public BootstrapperContext()

   4:     {

   5:         AppConfig = new ApplicationConfig();

   6:         Container = new WindsorContainer();

   7:     }

   8:  

   9:     public IWindsorContainer Container { get; private set; }

  10:     public ApplicationConfig AppConfig { get; private set; }

  11: }

   1: public interface IAmABootstrapperAction

   2: {

   3:     void Execute(BootstrapperContext context);

   4: }

 

   1: public interface IAmABootstrapperComposition

   2: {

   3:     IEnumerable<IAmABootstrapperAction> Actions { get; }

   4: }

 

   1: public class BootstrapperExecutor

   2: {

   3:     public static void StartupApplication(IAmABootstrapperComposition bootstrapperComposition)

   4:     {

   5:         var exceptionMessage = "Beim Starten der Anwendung ist ein Fehler aufgetreten. Bitte den Support kontaktieren.\n\n";

   6:  

   7:         if (bootstrapperComposition.Actions == null || !bootstrapperComposition.Actions.Any())

   8:         {

   9:             throw new BootstrapperException(exceptionMessage, new ArgumentOutOfRangeException("Auf dem Bootstrapper waren keine Actions definiert"));

  10:         }

  11:  

  12:         var context = new BootstrapperContext();

  13:  

  14:         var time = TimedAction.Run(() =>

  15:                                    {

  16:                                        foreach (var action in bootstrapperComposition.Actions)

  17:                                        {

  18:                                            var actionName = action.GetType().Name;

  19:                                            SiAuto.Main.LogMessage(string.Format("{0} gestartet", actionName));

  20:  

  21:                                            var timeTaken = TimedAction.Run(() => { ExecuteAction(action, context, exceptionMessage); });

  22:  

  23:                                            SiAuto.Main.LogMessage(string.Format("{0} in {1} erfolgreich durchgeführt",

  24:                                                                                 actionName,

  25:                                                                                 timeTaken.Format())

  26:                                                );

  27:                                        }

  28:                                    });

  29:     }

  30:  

  31:     private static void ExecuteAction(IAmABootstrapperAction action, BootstrapperContext context, string exceptionMessage)

  32:     {

  33:         try

  34:         {

  35:             action.Execute(context);

  36:         }

  37:         catch (Exception ex)

  38:         {

  39:             SiAuto.Main.LogException(string.Format("Fehler beim Bootstrapping: {0}", ex.GetFullExceptionMessage()), ex);

  40:             throw new BootstrapperException(string.Format("{0}{1}", exceptionMessage, ex.GetFullExceptionMessage()), ex);

  41:         }

  42:     }

  43: }

 

Welchen Ansatz verfolgt ihr?

Fragen oder Feedback könnt ihr mir gerne als Kommentar hinterlassen.

Precondition Methoden sind Gift für die API

Ich sehe öfters eine API, bei der ich vor dem eigentlichen Aufruf der gewünschten Methode bzw. nach dem Erzeugen des Objekts zuerst eine Initialize oder Configure Methode aufrufen muss.

   1: var foo = new Foo();

   2: foo.Initialize(Bar bar);

   3: foo.Execute();

Das finde ich persönlich unschön, schließlich muss der Aufrufer somit die Komponente gut kennen. Besser wäre, wenn nach der Erzeugung nur die Initialize Methode zur Verfügung stünde. Erst nach dem Aufruf selbiger sollte es möglich sein die Execute Methode aufzurufen.

Hier zwei Beispiele, wie sich das technisch lösen lässt:

   1: public class Foo

   2: {

   3:     private Foo() {}

   4:  

   5:     public static Foo Initialize(Bar bar)

   6:     {

   7:         //do your stuff

   8:         return new Foo();

   9:     }

  10:  

  11:     public void Execute()

  12:     {

  13:         //do something

  14:     }

  15: }

Auf Foo wird dann wie folgt zugegriffen (beachte: this ist in diesem Fall eine Instanz von Bar):

   1: var foo = Foo.Initialize(this);

   2: foo.Execute();

 

Hier eine Lösung für die Verwendung in einem IoC Container. Statt Foo und Bar mit kleinen Änderungen.

Interface1:

   1: public interface ISetupParallelization

   2: {

   3:     IRunParallelization SetupWith(ParallelizationConfig config);

   4: }

Interface2:

   1: public interface IRunParallelization

   2: {

   3:     ParallelizationStatus Run(Queue<dynamic> jobs);       

   4: }

Implementierung beider Interfaces in einer Klasse:

   1: public class CalculationParallelizer : ISetupParallelization, IRunParallelization

   2: {

   3:     public CalculationParallelizer()

   4:     {

   5:     }

   6:  

   7:     public ParallelizationStatus Run(Queue<dynamic> jobs)

   8:     {

   9:         //do something        

  10:     }

  11:  

  12:     public IRunParallelization SetupWith(ParallelizationConfig config)

  13:     {

  14:         _config = config;

  15:         return this;

  16:     }    

  17: }

 

Im vorliegenden Fall würde im Container nur der Service ISetupParallelization registriert werden. Wenn dir der Beitrag gefallen hat, dann vote dafür und/oder hinterlasse einen Kommentar. Hier geht es zu Videos zum Thema von IoC.

Clean Code Series – Episode 1

Hier der Blogeintrag zu dem entsprechenden Video. Es geht um ein Frage eines Bekannten, der SAP Lösungen entwickelt und der von mir Vorschläge für einen Ansatz einer Problemdomäne aus seiner Praxis haben wollte.

Hier die Modalitäten:

Ausgangssituation:

· Wir haben eine Entität, beispielsweise eine Liste von Aktivitäten

· Diese Entität filtert abhängig vom angemeldeten User einige Aktivitäten und liefert den Rest an den Aufrufer zurück

· Der Filtermechanismus und die eigentliche Liste sind auf zwei Klassen aufgeteilt, die beide dasselbe Interface implementieren

· Beide Klassen hängen nur in Form einer Aufrufhierarchie voneinander ab und sind in Reihe geschaltet (Decorator)

· Der Filtermechanismus hat Abhängigkeiten zu einer Datenbankzugriffsklasse

Das schreit ja förmlich nach IoC: Zusammenbauen einer Aufrufhierarchie über Decorator, dazu ggf. weitere Abhängigkeiten auflösen.

Schön. Aber leider ist es eine schlechte Idee, konkrete Entitäten über einen IoC Container zu erzeugen.

Was also tun? Factories bauen?

Ich denke nicht, wäre es nicht geschickter, auf die Klassen das Prototype-Pattern anzuwenden?

Der IoC erzeugt dann lediglich einen Prototypen, der von den Erzeugern konkreter Arbeitslisten als Vorlage genutzt würde. Instanziierung dann folglich über prototype->clone( ).

Was denkst du?

Meine Antwort:

Für mich ist der Ansatz nicht gut modelliert. Könnt ihr das nicht in einer Klasse abbilden? Aus Sicht des Domain Driven Designs könnte man das vielleicht so implementieren:

Ihr habt eine Klasse Activities, welcher ihr beim Erzeugen die Liste alle möglichen Activities übergeben müsst. Im Konstruktor könnt ihr nach Belieben noch eine Validierung vornehmen, z.B. ob die Liste überhaupt Elemente enthält bzw. nicht null ist.

Die Gesamtmenge speichert ihr in einer privaten Variablen. Zusätzlich legt ihr ein readonly Feld für den Zugriff von außen an. Danach benötigt die Klasse nur noch Filtermöglichkeiten. In .NET würde man nur eine Methode schreiben, nämlich ApplyFilter und übergibt an diese einen Lambda Ausdruck. […] Übrigens: Wie du intern die Datenhaltung betreibst, ist dir überlassen. Ich habe es beispielsweise mit einer Liste gemacht, die wesentlich spezieller ist als Enumerable. Da könntest du sogar den Spaß in eine Textdatei wegspeichern und bei Aufruf immer wieder auslesen. Hier ist die klare Datenkapselung eingehalten. Nach außen hin sieht man eine Veröffentlichung auf Basis der sehr generischen IEnumerable Implementierung, intern verwende ich etwas sehr Spezielles.

Nach kurzer Diskussion, was ABAP hier an Möglichkeiten bietet, habe ich folgenden Vorschlag gemacht:

Clean Code Series–Episode 1

Was meint ihr?

Einführung in IoC Container

In diesem Webcast biete ich einen kleinen Einstieg zur Verwendung von IoC Containern. Diese Frameworks helfen bei der Umsetzung des Inversion of Control Principle unter Einsatz von Dependency Injection. Damit ist es möglich gemeinsam an an einem Feature zu arbeiten und so den Work in Progress (WiP) zu minimieren.

  • Alle Blogeinträge zu Castle.Windsor samt den im Video gezeigten Code Beispielen gibt es hier.
  • Die Projekte aus dem Webcast habe ich vorübergehend hier zur Verfügung gestellt.

 

Modularisierung durch Dependency Injection

Workshop Test Driven Development

Nach dem DDD Workshop nahm ich ebenfalls bei Dennis an der TDD Session teil. Persönlich habe ich hier einige Erfahrungen. Angefangen bei dem praktischen Einsatz in unserem ERP System über betriebsinterne Coding Dojos bis hin zu Katas in der Karlsruhe User Group.

In dem Kontext brachte mir der Workshop leider nicht weiter. Meine eigentlichen Erwartungen waren dahingehend gerichtet:

  • Besonders gute TDD/BDD Frameworks kennen lernen
  • Best Practices für konkrete Spezialfälle (Parallelisierung, Zeitstempel, Datenbankzugriff) exerzieren

Allerdings konnte ich den Einblick bekommen, dass es (leider!) immer noch Entwickler gibt, die vom Arbeitgeber kein ReSharper zur Verfügung gestellt bekommen oder mit Windows XP arbeiten müssen. Meiner Ansicht nach ein absolutes No-Go! Hier lässt sich nur hoffen, dass ein Umdenken in den verantwortlichen Stellen noch stattfinden wird.

Workshop – Eine Zeitreise mit dem Desktop Teil 2

Nachdem ich in Teil 1 die aktuell zur Verfügung stehenden Technologien angesprochen habe, soll es nun mehr um Patterns und Clean Code Prinzipien schlechthin gehen.

Während WinForms mit seinem Code Behind in keinster Weise den Anforderungen an die Evolvierbarkeit von Code genügt, wurde mit WPF von Anfang an eine leichte Abwandlung des MVC/MVP Patterns “vermarktet”: Das Model View ViewModel Pattern.

Frank und Silvio stellen hierbei das Seperation of Concerns Principle in den Vordergrund. Besonders gut gefallen hat mir in diesem Kontext auch deren Haltung zu Domain Driven Design. Wie ich, haben sie eine von der ursprünglichen Lehre Evans abweichende Meinung bgzl. der Vermischung von Daten und Logik im selben Objekt. Ralf Westphal hat dies in den vergangenen 6 Monaten ebenfalls in einer 3-teiligen Serie in der dotnetpro (in den Heften 4, 6 und 7 2012) thematisiert.

Anmerkung: Auf dem im Juli stattgefundenen .NET Open Space Süd kam im Übrigen selbige Diskussion. Deshalb an dieser Stelle meine Aufforderung an die Community hierüber vermehrt zu bloggen.

Leider hat MVVM auch diverse Nachteile, darunter das häufige Wiederholen von gleichem bzw. ähnlichem Code. Nachdem kurz über diverse MVVM Frameworks gesprochen wurde, stellten die Referenten eine von ihnen entwickelte im Produktiveinsatz befindliche Lösung vor, die mit ca. 1000 Codezeilen recht überschaubar ist. Laut Aussagen haben sie sich dafür die Schmerzstellen in den eigenen Projekten angeschaut und das Beste für sich aus den verschiedenen Frameworks herausgepickt.

Den Code werde ich, nachdem die Zwei das Feedback des Workshops eingearbeitet haben, mit deren freundlicher Erlaubnis hier online stellen.

Webcast Strategy Pattern mit IoC

Den Webcast zu diesem Blogeintrag gibt es hier.

Strategy Pattern mit IoC sauber implementiert

Ein kurzer Hinweis vorab: Den Inhalt des Blogeintrags habe ich auch in einem Webcast zusammengefasst. Das Video gibt es auf YouTube. Den Code findet ihr hier.

In meinem letzten Blogeintrag habe ich das Strategy Pattern in der Praxis gezeigt. Primär gab es noch einen Smell, welchen ich erwähnt hatte: Das Open Closed Principle ist damit noch nicht 100%ig eingehalten und an einer Stelle heble ich mein IoC Konzept aus. Das passiert genau hier:

   1: public StateHandler(IClock clock, IBuildDefaultProposalsValues defaultValues)

   2: {

   3:     Handler = new Dictionary<SelloutStates, ICreateOrderProposal>

   4:               {

   5:                   {SelloutStates.Oversupply, null},

   6:                   {SelloutStates.Predicted, new PredictedGap(defaultValues)},

   7:                   {SelloutStates.Urgent, new UrgentGap(defaultValues, clock)},

   8:                   {SelloutStates.AppointmentWarnings, new AppointmentWarning(defaultValues, clock)},

   9:                   {SelloutStates.Unknown, null},

  10:                   {SelloutStates.Verify, new NoForecastPossible(defaultValues)},

  11:                   {SelloutStates.Ok, new UncomplicatedAppointment(defaultValues, clock)}

  12:               };

  13: }

Zum einen müsste ich die Klasse immer anpassen, wenn ich einen weiteren Status aufnehmen möchte. Zum anderen erzeuge ich mir Instanzen von Klassen, welche ich nicht über den Container erhalten habe, sprich ich hole mir die Abhängigkeiten selbst, statt mir diese gemäß Inversion of Control Principle zuweisen zu lassen. Das wäre zwar möglich gewesen, allerdings würde der Konstruktor dadurch erheblich aufblähen, weil ich pro Status eine Implementierung reinreichen müssten. Dieses Problem könnte ich über Service Location lösen, d.h. ich lasse mir lediglich den Container reinreichen und mache die Auflösung intern. Für mich persönlich auch keine schöne Lösung (Hinweis: Dafür müsste man den Container in sich selbst registrieren…).

Ob nun saubere Dependency Injection mit aufgeblähtem Konstruktor oder Service Location, in jedem Fall bliebe das Problem, dass ich jedes Mal im Container eine weitere Registrierung für einen neuen Status durchführen müsste.

Daraufhin kamen Rückfragen, wie dies am besten zu lösen sei. Das soll Thema dieses Blogeintrags und des dazu passenden Webcasts sein, v.a. weil im Netz auch nur selten saubere Implementierungen anzutreffen sind, die alle Prinzipien einhalten.

Als erstes wird der obere Code gänzlich entfernt, da dieser nicht mehr benötigt wird. Hinter dem Code steckte eigentlich das Factory Pattern. Ich lasse mir durch die Factory (abhängig vom Status) das entsprechende Objekt erzeugen und arbeite dann mit diesem weiter. Castle.Windsor als IoC Container bietet uns hierfür sogenannte interface-based factories an.

Anmerkung: Der folgende Code basiert nicht mehr auf dem bisherigen, welchen ich im vorherigen Blogeintrag verwendet habe. Im Webcast ist dazu alles erläutert und ich habe das Projekt unter Github zur Verfügung gestellt.

   1: yield return Component

   2:     .For<IchVermittleVorschlagsrechner>()

   3:     .AsFactory(c => c.SelectedWith(new VorschlagsrechnerVermittler()));

Wie man sieht, muss man lediglich das Factory-Interface, welches man zuvor selbst ausimplementiert hatte, angeben und im Anschluss ‘AsFactory’ anhängen. Als Parameter übergebe ich den Verweis auf eine Logik, welche die Factory später intern verwendet, um mir das korrekte Objekt (den korrekten Service) zurückzuliefern. Das Bedeutet, dass “new VorschlagsrechnerVermittler” der Factory, wenn auf ihr ein Aufruf stattfindet, sagen muss, was sie zurückgeben soll. Es folgt die Implementierung:

   1: public class VorschlagsrechnerVermittler : DefaultTypedFactoryComponentSelector

   2: {

   3:     protected override string GetComponentName(MethodInfo method, object[] arguments)

   4:     {

   5:         if (method.Name == "Für" && arguments.Length == 1 && arguments[0] is Bestandsstatus)

   6:         {

   7:             var status = arguments[0].ToString();

   8:             //von mir frei gewählte Konvention wie die Komponente im Container heißt

   9:             return string.Format("BerechnerFürArtikelstatus{0}", status);

  10:         }

  11:         return base.GetComponentName(method, arguments);

  12:     }

  13: }

Dieser Code macht nun genau das, was ich vorher explizit im Dictionary definiert habe, allerdings anhand einer Konvention. Die Methode in Zeile 3 liefert als String den Namen der Komponente zurück basieren auf dem Namen des Status, also z.B. ergibt sich für den Status “Ok” der Komponentenname “BerechnerFürArtikelstatusOk”.

Nun fehlt lediglich noch eine kleine Anpassung für den IoC Container. Dieser weiß bisher nichts von einer Komponente “BerechnerFürArtikelstatusOk”. Eine Möglichkeit wäre, dass ich – wie bereits eingangs erwähnt – für jeden Status die Ausprägung im Container registriere, also in diesem Fall beispielsweise so:

   1: yield return Component.For<IchErrechneArtikelZukaufsvorschlag>()

   2:     .ImplementedBy<Ok>()

   3:     .Named("BerechnerFürArtikelstatusOk")

   4:     .LifestyleTransient();

Das widerspricht immer noch dem OCP, sodass ich es wie folgt löse:

   1: yield return AllTypes.FromThisAssembly()

   2:     .BasedOn<IchErrechneArtikelZukaufsvorschlag>()

   3:     .Configure(a => a.Named(string.Format("BerechnerFürArtikelstatus{0}",

   4:         a.Implementation.UnderlyingSystemType.Name)))

   5:     .Configure(a => a.LifestyleTransient());

Zunächst hole ich mir alle Klassen aus der aktuellen Assembly, welche auf “IchErrechneArtikelZukaufsvorschlag” basieren, also alle meinen konkreten Status-Implementierungen. Im Anschluss sage ich noch, welchen Name diese Komponenten im Container bekommen sollen. Hier steht die selbe Konvention wie in dem Code Sample  zuvor. Der Vollständigkeit halber sei erwähnt, dass ich hier gegen das Don’t Repeat Yourself Principle verstoße. Dies soll lediglich der Vereinfachung im Beispiel dienen.

Ab jetzt muss ich, wenn ein weiterer Status hinzu kommt, lediglich eine Implementierung für diesen machen. Bestehender Code muss nicht mehr angefasst werden.

Streit zwischen YAGNI und Open Closed Principle

Kürzlich hatte ich ein interessantes Gespräch darüber, ob man durch die Einhaltung von OCP YAGNI über den Haufen wirft. Hintergrund war der, dass ich persönlich meine Kontrakte (Interfaces) immer in eine separate Assembly lege. Wenn die Implementierung beispielsweise in “MyProgram.Finances” liegt, dann gibt es eine “MyProgram.Finances.Contracts”, die alle in “MyProgram.Finances” verwendeten Interfaces enthält. Das ist meine persönliche Konvention für meine Programme. Aus meiner Sicht entspricht dies perfekt dem OCP, da auf diese Art jeder Entwickler in der Lage ist anhand der Contracts seine eigene Implementierung zu schreiben und diese im IoC Container über einen Installer zu registrieren. Er muss dann lediglich meine Implementierung löschen. Generell macht das ganze Vorgehen besonders bei einer IoC Architektur Sinn!

Die andere Sichtweise war nun: Warum Overengineering betreiben, wenn es sowieso nur eine Implementierung gibt und wir rein für uns entwickeln, sprich es keine Dritte gibt, die separate Lösungen anbieten wollen? Das widerspräche dem YAGNI Prinzip. Der Gegenvorschlag war also, dass alles in die gleiche Assembly kommt. Das Interface wäre immer noch Public und die Implementierung internal, da man ja weiterhin die Implementierung im IoC registriert.

Das Problem ist in dem Fall, dass man eben nicht mehr die Freiheit hat die Implementierung zu überschreiben ohne den bestehenden Code anzufassen.

Persönlich sehe ich es nicht so, dass man gegen das YAGNI Prinzip verstößt, wenn man die Interfaces in eine separate Assembly legt, da man nicht “mehr” Code entwickelt, sondern lediglich die Architektur von Anfang an offen bzw. erweiterbar hält. Natürlich hat man jetzt ein Projekt mehr, aber der eigentliche produktive Code ist der gleiche. Hingegen verstößt man imho definitiv gegen das OCP, wenn man man die Interfaces nicht separiert.

Wie seht ihr das? Feedback über Facebook, Twitter oder WordPress ausdrücklich erwünscht!

Anti Patterns–Any vs. Count

 

   1: static void Test()

   2: {

   3:     var list1 = new List<int> { 1, 2, 3, 4, 5 };

   4:  

   5:     if (list1.Count > 0)

   6:     {

   7:         Console.WriteLine("if - count");

   8:     }

   9:     if (list1.Any())

  10:     {

  11:         Console.WriteLine("if - any");

  12:     }

  13:  

  14:     Console.ReadLine();

  15: }

 

Wo liegt der Unterschied zwischen list1.Count und list1.Any? In erstem Fall wird die Liste durchiteriert, um herauszufinden, wie viele Elemente in der Liste sind. Bei Any wird nur geprüft, ob überhaupt ein Element in der Liste ist. Bei einer Prüfung > 0 ist also Any die bessere Wahl, weil die Liste nicht durchiteriert werden muss! Bei 100000 Elementen kann sich das durchaus lohnen…

image

%d Bloggern gefällt das: